Publications

Space Group work recently featured on the back cover of ChemPhysChem:
Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht-Metal–Organic Frameworks

Prior work cited in a Wikipedia article on carbene radicals and their bonding mechanisms:
Carbene Radical

Google Scholar stats

Featured Papers

  1. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separations  
    Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K. A.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J.
    Nature. 2013, 495, 80-84.
  2. On the Mechanism of Hydrogen Storage in a Metal-Organic Framework Material  
    Belof, J. L.; Stern, A. C.; Eddaoudi, M.; Space, B.,
    J. Am. Chem. Soc. 2007, 129 (49), 15202-15210.
  3. Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane.  
    Li, B.; Zhang, Y.; Krishna, R.; Yao, K.; Han, Y.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S.
    J. Am. Chem. Soc. 2014, 136 (24), 8654-8660.
  4. Theoretical modeling of interface specific vibrational spectroscopy: methods and applications to aqueous interfaces  
    Perry, A.; Neipert, C.; Space, B.; Moore, P. B.,
    Chem Rev 2006, 106 (4), 1234-58.
  5. A Robust Molecular Porous Material with High CO2 Uptake and Selectivity  
    Nugent, P.S.; Rhodus, V.L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    J. Am. Chem. Soc., 2013, 135 (30), 10950–10953.
  6. Identification of a wagging vibrational mode of water molecules at the water/vapor interface  
    Perry, A.; Neipert, C.; Ridley, C.; Space, B.; Moore, P. B.,
    Physical Review E 2005, 71 (5), 050601.
    ››The predicted vibrational Wagging Mode was measured experimentally a decade later with the shape and location predicted!

Papers with Current Students

  1. Molecular Sieving and Direct Visualization of CO2 in Binding Pockets of an Ultramicroporous Lanthanide MOF Platform.  
    Han, L.; Pham, T.; Zhuo, M.; Forrest, K. A.; Suepaul, S.; Space, B.; Zaworotko, M. J.; Shi, W.; Chen, Y.; Cheng, P.; Zhang, Z.
    ACS Appl. Mater. Interfaces 2019, 11 (26), 23192–23197.
  2. Investigating CO2 Sorption in SIFSIX-3-M (M = Fe, Co, Ni, Cu, Zn) Through Computational Studies  
    Forrest, K. A.; Pham, T.; Elsaidi, S. K.; Mohamed, M.; Thallapally, P. K.; Zaworotko, M. J.; Space, B.
    Cryst. Growth Des. 2019, 19 (7), 3732–3743.
  3. A Metal–Organic Framework Based Methane Nano‐trap for the Capture of Coal‐Mine Methane  
    Niu, Z.; Cui, X.; Pham, T.; Lan, P. C.; Xing, H.; Forrest, K. A.; Wojtas, L.; Space, B.; Ma, S.
    Angew. Chem. Int. Ed. 2019, <9>58 (30), 10138-10141.
  4. Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene  
    Chen, B. , Peng, Y. , He, C. , Pham, T. , Wang, T. , Li, P. , Krishna, R. , Forrest, K. , Hogan, A. , Suepaul, S. , Space, B. , Fang, M. , Chen, Y. , Zaworotko, M. , Li, J. , Cheng, P. , Li, L.; Zhang, Z.
    Angew. Chem. Int. Ed. 2019, 58 (30), 10209-10214.
  5. Highly selective CO2 removal for one-step liquefied natural gas processing by physisorbents  
    Madden, D. G.; O’Nolan, D.; Chen, K.-J.; Hua, C.; Kumar, A.; Pham, T.; Forrest, K. A.; Space, B.; Perry IV, J. J.; Khraisheh, M.; Zaworotko, M. J.
    Chem. Commun. 2019, 55 (22), 3219–3222.
  6. Hydrogen Adsorption in a Zeolitic Imidazolate Framework with lta Topology  
    Pham, T.; Forrest, K. A.; Furukawa, H.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2018, 122 (27), 15435–15445.
  7. Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene  
    Peng, Y.; Pham, T.; Li, P.; Wang, T.; Chen, Y.; Chen, K.-J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J.; Zhang, Z.
    Angew. Chem. Int. Ed. 2018, 57 (34), 10971–10975
  8. Investigating C2H2 Sorption in a–[M3(O2CH)6] (M = Mg, Mn) Through Theoretical Studies  
    Forrest, K. A.; Franz, D. M.; Pham, T.; Space, B.
    Cryst. Growth Des. 2018, 18 (9), 5342 - 5352.
  9. Readily accessible shape-memory effect in a porous interpenetrated coordination network  
    Shivanna, M.; Yang, Q.-Y.; Bajpai, A.; Sen, S.; Hosono, N.; Kusaka, S.; Pham, T.; Forrest, K. A.; Space, B.; Kitagawa, S.; Zaworotko, M. J.
    Sci. Adv. 2018, DOI: DOI: 10.1126/sciadv.aaq1636.
  10. Theoretical study of the effect of halogen substitution in molecular porous materials for CO2 and C2H2 sorption  
    Franz, D. M.; Djulbegovic, M.; Pham, T.; Space, B.
    AIMS Mater. Sci. 2018, 5 (2), 226–245.
  11. Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance  
    O’Nolan, D.; Madden, D. G.; Kumar, A.; Chen, K.-J.; Pham, T.; Forrest, K. A.; Patyk-Kazmierczak, E.; Yang, Q.-Y.; Murray, C. A.; Tang, C. C.; Space, B.; Zaworotko, M. J.
    Chem. Commun. 2018, 54 (28), 3488–3491.
  12. Efficient CO2 Removal for Ultra-Pure CO Production by Two Hybrid Ultramicroporous Materials  
    Chen, K.-J.; Yang, Q.-Y.; Sen, S.; Madden, D. G.; Kumar, A.; Pham, T.; Forrest, K. A.; Hosono, N.; Space, B.; Kitagawa, S.; Zaworotko, M. J.
    Angew. Chem. Int. Ed. 2018, 57 (13), 3332–3336.
  13. A Stable Metal–Organic Framework Featuring Local Buffer Environment for Carbon Dioxide Fixation  
    He, H.; Sun, Q.; Gao, W.; Perman, J. A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S.
    Angew. Chem. Int. Ed. 2018, 57 (17), 4657–4662.
  14. Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal–organic framework.  
    Franz, D.; Dyott, Z.; Forrest, K.; Hogan, A.; Pham, T.; Space, B.
    Phys. Chem. Chem. Phys. 2018, 20, 1761 - 1777. DOI: 10.1039/c7cp06885a.
  15. Investigating gas sorption in an rht-metal–organic framework with 1,2,3-triazole groups.  
    Forrest, K. A.; Pham, T.; Space, B.
    Phys. Chem. Chem. Phys. 2017, 19, 29204 - 29221.
  16. The effect of centred versus offset interpenetration on C2H2 sorption in hybrid ultramicroporous materials.  
    Bajpai, A.; O’Nolan, D.; Madden, D. G.; Chen, K.-J.; Pham, T.; Kumar, A.; Lusi, M.; Perry IV, J. J.; Space, B.; Zaworotko, M. J.
    Chem. Commun., 2017 53 (84), 11592–11595, DOI: 10.1039/C7CC05882A.
  17. Experimental and Theoretical Investigations of the Gas Adsorption Sites in rht-Metal–Organic Frameworks.  
    Pham, T.; Forrest, K. A.; Franz, D.; Space, B.
    CrystEngComm, 2017, 19 (32), 4646–4665.
  18. Comparing the mechanism and energetics of CO2 sorption in the SIFSIX series.  
    Forrest, K. A.; Pham, T.; Space, B.
    CrystEngComm, 2017, 19 (24), 3338–3347.
  19. Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes.  
    Pham, T.; Forrest, K. A.; Franz, D. M.; Guo, Z.; Chen, B.; Space, B.
    Phys. Chem. Chem. Phys., 2017, 19 (28), 18587–18602.
  20. The rotational dynamics of H2 adsorbed in covalent organic frameworks.  
    Pham, T.; Forrest, K. A.; Mostrom, M.; Hunt, J. R.; Furukawa, H.; Eckert, J.; Space, B.
    Phys. Chem. Chem. Phys. 2017, 19 (20), 13075–13082.
  21. Fine Tuning of MOF-505 Analogues to Reduce Low Pressure Methane Uptake and Enhance Methane Working Capacity.  
    Zhang, M.; Zhou, W.; Pham, T.; Forrest, K. A.; Liu, W.; He, Y.; Wu, H.; Yildirim, T.; Chen, B.; Space, B.; Pan, Y.; Zaworotko, M. J.; Bai, J.
    Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201704974.
  22. Highly selective separation of C2H2 from CO2 by a new dichromate-based Hybrid Ultramicroporous Material.  
    Scott, H. S.; Shivanna, M.; Bajpai, A.; Madden, D.; Chen, K.-J.; Pham, T.; Forrest, K.; Hogan, A.; Space, B.; Perry IV, J.; Zaworotko, M.
    ACS Appl. Mater. Interfaces 2017, 9 (39), 33395-33400.
  23. High H2 Sorption Energetics in Zeolitic Imidazolate Frameworks.  
    Pham, T.; Forrest, K. A.; Furukawa, H.; Russina, M.; Albinati, A.; Georgiev, P. A.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2017, 121 (3), 1723–1733. DOI: 10.1021/acs.jpcc.6b1146
  24. Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks.  
    Elsaidi, S. K.; Mohamed, M. H.; Simon, C. M.; Braun, E.; Pham, T.; Forrest, K. A.; Xu, W.; Banerjee, D.; Space, B.; Zaworotko, M. J.; Thallapally, P. K.
    Chem. Sci. 8(3) 2373-2380 2017. DOI: 10.1039/C6SC05012C
  25. Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials.  
    Chen, K.-J.; Scott, H. S.; Madden, D. G.; Pham, T.; Kumar, A.; Bajpai, A.; Lusi, M.; Forrest, K. A.; Space, B.; Perry IV, J. J.; Zaworotko, M. J.
    Chem 2016, 1(5), 753–765. DOI: http://dx.doi.org/10.1016/j.chempr.2016.10.009
  26. Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds.  
    Bajpai, A.; Scott, H. S.; Pham, T.; Chen, K.-J.; Space, B.; Lusi, M.; Perry, M. L.; Zaworotko, M. J.
    IUCrJ 2016, 3 (6), 430-439. DOI: 10.1107/S2052252516015633.
  27. Theoretical Investigations of CO2 and H2 Sorption in Robust Molecular Porous Materials  
    Pham, T.; Forrest, K. A.; Chen, K.-J.; Kumar, A.; Zaworotko, M. J.; Space, B.
    Langmuir 2016 32(44), 11492-11505. DOI: 10.1021/acs.langmuir.6b03161
  28. Accurate H2 Sorption Modeling in the rht-MOF NOTT-112 Using Explicit Polarization.  
    Franz, D.; Forrest, K. A.; Pham, T.; Space, B.
    Cryst. Growth Des. 2016, DOI: 10.1021/acs.cgd.6b01058.
  29. Tuning Pore Size in Square-Lattice Networks for Size-Selective Sieving of CO2.  
    Chen, K.-J.; Madden, D. G.; Pham, T.; Forrest, K. A.; Kumar, A.; Yang, Q.-Y.; Xue, W.; Space, B.; Perry IV, J. J.; Zhang, J.-P.; Chen, X.-M.; Zaworotko, M. J.
    Angew. Chem. Int. Ed. 2016, 55 (35), 10268–10272.
  30. An unusual H2 sorption mechanism in PCN-14: insights from molecular simulation.  
    Pham, T.; Forrest, K. A.; Space, B.
    Phys. Chem. Chem. Phys. 2016, 18, 21421 - 21430
  31. Dynamics of H2 adsorbed in porous materials as revealed by computational analysis of inelastic neutron scattering spectra.  
    Pham, T.; Forrest, K. A.; Space, B.; Eckert, J.
    Phys. Chem. Chem. Phys. 2016, 18, 17141–17158.
  32. Hybrid Ultra-Microporous Materials for Selective Xe Adsorption and Separation.  
    Mohamed, M. H.; Elsaidi, S. K.; Pham, T.; Forrest, K. A.; Schaef, H. T.; Hogan, A.; Wojtas, L.; Xu, W.; Space, B.; Zaworotko, M. J.; Thallapally, P. K.
    Angew. Chem. Int. Ed. 2016, 55 (29), 8285–8289. .
  33. Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers.  
    Scott, H. S.; Ogiwara, N.; Chen, K.-J.; Madden, D. G.; Pham, T.; Forrest, K.; Space, B.; Horike, S.; Perry IV, J. J.; Kitagawa, S.; Zaworotko, M. J.
    Chem. Sci. 2016, 7, 5470–5476.
  34. Exceptional H2 sorption characteristics in a Mg2+-based metal–organic framework with small pores: insights from experimental and theoretical studies.  
    Pham, T.; Forrest, K. A.; Falcão, E. H. L.; Eckert, J.; Space, B.
    Phys. Chem. Chem. Phys. 2016, 18(3), 1786–1796.
  35. Dramatic Effect of the Electrostatic Parameters on H2 Sorption in an M-MOF-74 Analogue.  
    Pham, T.; Forrest, K. A.; Eckert, J.; Space, B.
    Cryst. Growth Des. 2016, 16(2), 867–874.
  36. Crystal Engineering of a 4,6-c fsc Platform That Can Serve as a Carbon Dioxide Single-Molecule Trap.  
    Elsaidi, S. K.; Mohamed, M. H.; Pham, T.; Hussein, T.; Wojtas, L.; Zaworotko, M. J.; Space, B.
    Cryst. Growth Des. 2016, 16(2), 1071–1080.
  37. Inelastic Neutron Scattering and Theoretical Studies of H2 Sorption in a Dy(III)-Based Phosphine Coordination Material.  
    Forrest, K. A.; Pham, T.; Georgiev, P. A.; Embs, J. P.; Waggoner, N. W.; Hogan, A.; Humphrey, S. M.; Eckert, J.; Space, B.
    Chem. Mater. 2015, 27, 7619–7626.
  38. Correction: Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas.
    Elsaidi, S. K.; Mohamed, M. H.; Schaef, H. T.; Kumar, A.; Lusi, M.; Pham, T.; Forrest, K. A.; Space, B.; Xu, W.; Halder, G. J.; Liu, J.; Zaworotko, M. J.; Thallapally, P. K.
    Chem. Commun. 2015, 51 16872–16872.
  39. Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht-Metal–Organic Frameworks.  
    Pham, T.; Forrest, K. A.; Gao, W.-Y.; Ma, S.; Space, B.
    ChemPhysChem 2015, 16(15), 3170–3179.
  40. Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas.  
    Elsaidi, S. K.; Mohamed, M. H.; Schaef, H. T.; Kumar, A.; Lusi, M.; Pham, T.; Forrest, K. A.; Space, B.; Xu, W.; Halder, G. J.; Liu, J.; Zaworotko, M. J.; Thallapally, P. K.
    Chem. Commun. 2015, 51, 15530-15533.
  41. Novel mode of 2-fold interpenetration observed in a primitive cubic network of formula [Ni(1,2-bis(4-pyridyl)acetylene)2(Cr2O7)]n.  
    Scott, H. S.; Bajpai, A.; Chen, K.-J.; Pham, T; Space, B; Perry, J. J.; Zaworotko, M. J.
    Chem. Commun. 2015, 51, 14832-14835.
  42. Investigating H2 Sorption in a Fluorinated Metal–Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering.  
    Forrest, K. A.; Pham, T.; Georgiev, P. A.; Pinzan, F.; Cioce, C. R.; Unruh, T.; Eckert, J.; Space, B.
    Langmuir 2015, 31, 7328-7336.
  43. The local electric field favours more than exposed nitrogen atoms on CO2 capture: a case study on the rht-type MOF platform  
    Gao, W.-Y.; Pham, T.; Forrest, K. A.; Space, B.; Wojtas, L.; Chen, Y.-S.; Ma, S.
    Chem. Commun. 2015, 51, 9636-9639.
  44. Understanding Hydrogen Sorption in In-soc-MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions  
    Pham, T.; Forrest, K. A.; Hogan, A.; Tudor, B.; McLaughlin, K.; Belof, J. L.; Eckert, J.; Space, B.
    Cryst. Growth Des. 2015, 15, 1460-1471.
  45. Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation  
    Zhang, Y.; Li, B.; Krishna, R.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Forrest, K.; Space, B.; Ma, S.
    Chem. Commun. 2015, 51, 2714–2717.
  46. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks  
    Gao, W.; Cai, R.; Pham, T.; Forrest, K.; Hogan, A.; Nugent, P.; Williams, K.; Wojtas, L.; Luebke, R.; Weselinski, L; Zaworotko, M.; Space, B.; Chen, Y; Eddaoudi, M; Shi, X.; Ma, S
    Chem. Mater. 2015, 27 (6), pp 2144–2151.
  47. Understanding the H2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn).  
    Pham, T.; Forrest, K.A.; Banerjee, R.; Orcajo, G.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2015, 119 (2), pp 1078–1090.
  48. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface.  
    Green, A.J.; Space, B.
    J. Phys. Chem. B. 2015, 119, 9219–9224.
  49. Modeling PCN-61 and PCN-66: Isostructural rht-Metal–Organic Frameworks with Distinct CO2 Sorption Mechanisms.  
    Pham, T.; Forrest, K. A.; McDonald, K.; Space, B.
    Cryst. Growth Des. 2014, 14, 5599–5607.
  50. Capturing the H2–Metal Interaction in Mg-MOF-74 Using Classical Polarization.  
    Pham, T.; Forrest, K. A.; McLaughlin, K.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2014, 118, 22683–22690.
  51. A high rotational barrier for physisorbed hydrogen in an fcu-metal–organic framework.  
    Pham, T.; Forrest, K.A.; Georgiev, P.; Lohstroh, W.; Xue, D.-X.; Hogan, A.; Eddaoudi, M.; Space, B.; Eckert, J.
    Chem. Commun. 2014, 50, 14109-14112.
  52. Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials.  
    Nugent, P.; Pham, T.; McLaughlin, K.; Georgiev, P.; Lohstroh, W.; Embs, J. P.; Zaworotko, M. J.; Space, B.; Eckert, J.
    J. Mater. Chem. A 2014, 2, 13884-13891.
  53. Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane.  
    Li, B.; Zhang, Y.; Krishna, R.; Yao, K.; Han, Y.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S.
    J. Am. Chem. Soc. 2014, 136 (24), 8654-8660.
  54. Insights into an intriguing gas sorption mechanism in a polar metal–organic framework with open-metal sites and narrow channels.  
    Forrest, K. A.; Pham, T.; McLaughlin, K.; Hogan, A.; Space, B.
    Chem. Commun. 2014, 50, 7283-7286.
  55. Theoretical Investigations of CO2 and CH4 Sorption in an Interpenetrated Diamondoid Metal–Organic Material  
    Pham, T.; Forrest, K. A.; Tudor, B.; Elsaidi, S. K.; Mohamed, M. H.; McLaughlin K.; Cioce, C. R.; Zaworotko, M. J.; Space, B.
    Langmuir 2014, 30(22), 6454–6462. [Featured Article]
  56. Putting the Squeeze on CH4 and CO2 through Control over Interpenetration in Diamondoid Nets.  
    Elsaidi, S. K.; Mohamed, M. H.; Wojtas, L.; Chanthapally, A.; Pham, T.; Space, B.; Vittal, J. J. Zaworotko, M. J.
    J. Am. Chem. Soc. 2014, 136, 5072–5077.
  57. Simulations of Hydrogen Sorption in rht-MOF-1: Identifying the Binding Sites Through Explicit Polarization and Quantum Rotation Calculations.  
    Pham, T.; Forrest, K. A.; Hogan, A.; McLaughlin, K.; Belof, J. L.; Eckert, J.; Space, B.
    J. Mater. Chem A 2014, 2, 2088–2100.
  58. Investigating the Gas Sorption Mechanism in an rht-Metal–Organic Framework Through Computational Studies.  
    Pham, T.; Forrest, K. A.; Eckert, J.; Georgiev, P. A.; Mullen, A.; Luebke, R.; Cairns, A. J.; Belmabkhout, Y.; Eubank, J. F.; McLaughlin, K.; Lohstroh, W.; Eddaoudi, M.; Space, B.
    J. Phys. Chem. C 2014, 118, 439–456.
  59. Efficient calculation of many-body induced electrostatics in molecular systems.  
    McLaughlin, K.; Cioce, C. R.; Pham, T.; Belof, J. L.; Space, B.
    J. Chem. Phys. 2013, 139, 184112.
  60. A Polarizable and Transferable PHAST N2 Potential For Use in Materials Simulation.  
    Cioce, C. R.; McLaughlin, K.; Belof, J. L.; Space B.
    J. Chem. Theory Comput. 2013, 9, 5550–5557.
  61. A Polarizable and Transferable PHAST CO2 Potential For Materials Simulation.  
    Mullen, A. L.; Pham, T.; Forrest, K. A.; Cioce, C. R.; McLaughlin, K.; Space, B.
    J. Chem. Theory Comput. 2013, 9, 5421–5429.
  62. Solving the Many-Body Polarization Problem on GPUs: Application to MOFs.  
    Tudor, B.; Space, B.
    J. Comput. Sci. Ed. 2013, 4, 30–34.
  63. Pillar substitution modulates CO2 affinity in “mmo” topology networks  
    Mohamed, M.H.; Elsaidi, S.K.; Pham, T.; Forrest, K.A.; Tudor, B.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    Chem. Commun., 2013, 49, 9809–9811.
  64. Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO2 Sorption in [Cu(bpy)2SiF6]  
    Forrest, K.A.; Pham, T.; Nugent, P.; Burd, S.D.; Mullen, A.; Wojtas, L.; Zaworotko, M.J.; Space, B.
    Cryst. Growth Des., 2013, 13 (10), 4542–4548.
  65. Computational Studies of CO2 Sorption and Separation in an Ultramicroporous Metal–Organic Material  
    Forrest, K.A.; Pham, T.; Hogan, A.; McLaughlin, K.; Tudor, B.; Nugent, P.; Burd, S.D.; Mullen, A.; Cioce, C.R.; Wojtas, L.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (34), 17687–17698.
  66. A Robust Molecular Porous Material with High CO2 Uptake and Selectivity  
    Nugent, P.S.; Rhodus, V.L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    J. Am. Chem. Soc., 2013, 135 (30), 10950–10953.
  67. Understanding Hydrogen Sorption in a Metal–Organic Framework with Open Metal Sites and Amide Functional Groups  
    Pham, T.; Forrest, K. A.; Nugent, P.; Belmabkhout, Y.; Luebke, R.; Eddaoudi, M.; Zaworotko, M. J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (18), 9340–9354.
  68. Theoretical Investigations of CO2 and H2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material  
    Pham, T.; Forrest, K.; McLaughlin, K.; Tudor, B.; Nugent, P.; Hogan, A.; Mullen, A.; Cioce, C.R.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (19), 9970–9982.
  69. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separations  
    Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K. A.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J.
    Nature. 2013, 495, 80-84.
  70. Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution  
    Nugent, P.; Rhodus, V.; Pham, T.; Tudor, B.; Forrest, K.A.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    Chem. Commun., 2013, 49, 1606-1608.
  71. Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61  
    Forrest, K.A.; Pham, T.; McLaughlin, K.; Belof, J.L.; Stern, A.C.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2012, 116 (29), 15538–15549.
  72. Highly Selective CO2 Uptake in Uninodal 6-Connected “mmo” Nets Based upon MO42– (M = Cr, Mo) Pillars  
    Mohamed, M.H.; Elsaidi, S.K.; Wojtas, L.; Pham, T.; Forrest, K.A.; Tudor, B.; Space, B.; Zaworotko, M.J.
    J. Am. Chem. Soc., 2012, 134 (48), 19556-19559.

Past Work

  1. A molecular H2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions  
    McLaughlin, K.; Cioce, C. R.; Belof, J. L.; Space, B.,
    J. Chem. Phys. 2012, 136 (19).
  2. Erratum: “A molecular H2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions” [J. Chem. Phys.136, 194302 (2012)]  
    McLaughlin, K.; Cioce, C. R.; Belof, J. L.; Space, B.,
    J. Chem. Phys. 2012, 137 (12), 129901.
  3. Understanding hydrogen sorption in a polar metal-organic framework with constricted channels  
    Stern, A. C.; Belof, J. L.; Eddaoudi, M.; Space, B.,
    J. Chem. Phys. 2012, 136, 034705.
  4. Hydrogen adsorbed in a metal organic framework-5: Coupled translation-rotation eigenstates from quantum five-dimensional calculations  
    Matanovic, I.; Belof, J. L.; Space, B.; Sillar, K.; Sauer, J.; Eckert, J.; Bacic, Z.,
    J. Chem. Phys. 2012, 137, 014701.
  5. A theoretical study of the sum frequency vibrational spectroscopy of the carbon tetrachloride/water interface  
    Green, A. J.; Perry, A.; Moore, P. B.; Space, B.
    Journal of Physics: Condensed Matter 2012, 24 (12), 124108.
  6. Characterization of Tunable Radical Metal-Carbenes: Key Intermediates in Catalytic Cyclopropanation  
    Belof, J. L.; Cioce, C. R.; Xu, X.; Zhang, X. P.; Space, B.; Woodcock, H. L.,
    Organometallics 2011, 30 (10), 2739-2746.
  7. Atomic Charges Derived from Electrostatic Potentials for Molecular and Periodic Systems  
    Chen, D.-L.; Stern, A. C.; Space, B.; Johnson, J. K.,
    J. Phys. Chem. A 2010, (114), 10225–10233.
  8. Evidence for Substrate Preorganization in the Peptidylglycine α-Amidating Monooxygenase Reaction Describing the Contribution of Ground State Structure to Hydrogen Tunneling  
    McIntyre, N. R.; Lowe, E. W.; Belof, J. L.; Ivkovic, M.; Shafer, J.; Space, B.; Merkler, D. J.,
    J. Am. Chem. Soc. 2010, 132 (46), 16393-16402.
  9. Dielectric analysis of poly(methyl methacrylate) zinc(II) mono-pinacolborane diphenylporphyrin composites  
    Hilker, B; Fields, K. B.; Stern, A.; Space, B.; Zhang, X. P.; Harmon, J. P.
    Polymer 2010, 51 (21), 4790-4805.
  10. A Predictive Model of Hydrogen Sorption for Metal-Organic Materials  
    Belof, J. L.; Stern, A. C.; Space, B.,
    J. Phys. Chem. C 2009, 113 (21), 9316-9320.
  11. Making a life in the physical sciences  
    Space, B.,
    Journal of Organizational Behavior 2008, 29 (6), 755-759.
  12. Photophysical Studies of the Trans to Cis Isomerization of the Push-Pull Molecule: 1-(Pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene (mepepy)  
    Mokdad, A.; Belof, J. L.; Yi, S. W.; Shuler, S. E.; McLaughlin, M. L.; Space, B.; Larsen, R. W.,
    J. Phys. Chem. A 2008, 112 (36), 8310-8315.
  13. An Accurate and Transferable Intermolecular Diatomic Hydrogen Potential for Condensed Phase Simulation  
    Belof, J. L.; Stern, A. C.; Space, B.,
    J. Chem. Theory Comput. 2008, 4 (8), 1332-1337.
  14. A Distributed Hyperpolarizability Model for Liquid Water  
    Neipert, C.; Space, B.,
    Comput. Lett., 2007, 3 (111), 431-440.
  15. Generalized Computational Time Correlation Function Approach: Quantifying Quadrupole Contributions to Vibrationally Resonant Second-Order Interface-Specific Optical Spectroscopies.  
    Neipert, C.; Space, B.; Roney, A. B.
    J. Phys. Chem. C, 2007, 117 (111), 8749–8756.
  16. On the Mechanism of Hydrogen Storage in a Metal-Organic Framework Material  
    Belof, J. L.; Stern, A. C.; Eddaoudi, M.; Space, B.,
    J. Am. Chem. Soc. 2007, 129 (49), 15202-15210.
  17. A combined photothermal and molecular dynamics method for determining molecular volume changes  
    Ridley, C.; Stern, A. C.; Green, T.; DeVane, R.; Space, B.; Miksosvska, J.; Larsen, R. W.,
    Chemical Physics Letters 2006, 418 (1-3), 137-141.
  18. Theoretical modeling of interface specific vibrational spectroscopy: methods and applications to aqueous interfaces  
    Perry, A.; Neipert, C.; Space, B.; Moore, P. B.,
    Chem Rev 2006, 106 (4), 1234-58.
  19. Theoretical Investigation of the Temperature Dependence of the Fifth-Order Raman Response Function of Fluid and Liquid Xenon  
    DeVane, R.; Kasprzyk, C.; Space, B.; Keyes, T.,
    J. Phys. Chem. B, 2006, 110(8), 3773–3781.
  20. A time correlation function theory describing static field enhanced third order optical effects at interfaces  
    Neipert, C.; Space, B.,
    J. Chem. Phys. 2006, 125, 224706.
  21. Time correlation function and finite field approaches to the calculation of the fifth order Raman response in liquid xenon  
    DeVane, R.; Space, B.; Jansen, T. I. C.; Keyes, T.,
    J. Chem. Phys. 2006, 125, 234501.
  22. Identification of a wagging vibrational mode of water molecules at the water/vapor interface  
    Perry, A.; Neipert, C.; Ridley, C.; Space, B.; Moore, P. B.,
    Physical Review E 2005, 71 (5), 050601.
  23. A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface  
    Perry, A.; Neipert, C.; Kasprzyk, C. R.; Green, T.; Space, B.; Moore, P. B.,
    J. Chem. Phys. 2005, 123 (144705).
  24. Applications of a time correlation function theory for the fifth-order Raman response function I: Atomic liquids  
    DeVane, R.; Ridley, C.; Space, B.; Keyes, T.,
    J. Chem. Phys. 2005, 123 (194507).
  25. A Molecular Dynamics Study of Aggregation Phenomena in Aqueous n-Propanol  
    Roney, A. B.; Space, B.; Castner, E. W.; Napoleon, R. L.; Moore, P. B.,
    J. Phys. Chem. B 2004, 108 (22), 7389-7401.
  26. Tractable theory of nonlinear response and multidimensional nonlinear spectroscopy  
    DeVane, R.; Ridley, C.; Space, B.; Keyes, T.,
    Phys. Rev. E 2004, 70.
  27. A time correlation function theory of two-dimensional infrared spectroscopy with applications to liquid water  
    DeVane, R.; Space, B.; Perry, A.; Neipert, C.; Ridley, C.; Keyes, T.,
    J. Chem. Phys. 2004 121, 3688
  28. A combined time correlation function and instantaneous normal mode study of the sum frequency generation spectroscopy of the water/vapor interface  
    Perry, A.; Ahlborn, H.; Space, B.; Moore, P. B.,
    J. Chem. Phys. 2003, 118 (18), 8411-8419.
  29. A Molecular Dynamics Method for Calculating Molecular Volume Changes Appropriate for Biomolecular Simulation  
    DeVane, R.; Ridley. C.; Larsen, R.W.; Space, B; Moore, P.B.; Chan, S.I.
    Biophysical Journal 2003 85, 2801-2807
  30. A time correlation function theory for the fifth order Raman response function with applications to liquid CS2  
    DeVane, R.; Ridley. C.; Space, B; Keyes, T.
    J. Chem. Phys. 2003 119, 6073
  31. A Combined Time Correlation Function and Instantaneous Normal Mode Investigation of Liquid-State Vibrational Spectroscopy  
    Moore, P.B.; Ahlborn, H.; Space, B.
    Liquid Dynamics 2002 Chapter 3, 30-43
  32. A Novel Technique for the Measurement of Polarization-Specific Ultrafast Raman Responses  
    Constantine, S.; Gardecki, J.A.; Zhou, Y.; Ziegler, L.D.
    J. Phys. Chem. A, 2001, 105 (43), 9851–9898
  33. A theoretical investigation of the temperature dependence of the optical Kerr effect and Raman spectroscopy of liquid CS2  
    Ji, X.; Ahlborn, H.; Space, B.; Moore, P.B.
    J. Chem. Phys., 2000, 113, 8693
  34. A combined instantaneous normal mode and time correlation function description of the optical Kerr effect and Raman spectroscopy of liquid CS2  
    Ji, X. D.; Alhborn, H.; Space, B.; Moore, P. B.; Zhou, Y.; Constantine, S.; Ziegler, L. D.
    J. Chem. Phys. 2000, 112 (9), 4186-4192.
  35. An atomically detailed description of metal–dielectric interfaces: The crossover from surface to bulk conducting properties of Ag–Xe  
    Shah, V.; Bowen, H.F.; Space, B.
    J. Chem. Phys. 2000, 112, 10998
  36. The effect of isotopic substitution and detailed balance on the infrared spectroscopy of water: A combined time correlation function and instantaneous normal mode analysis  
    Alhborn, H.; Space, B.; Moore, P.B.
    J. Chem. Phys. 2000, 112, 8083
  37. A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water.  
    Alhborn, H.; Ji, X.; Space, B.; Moore, P.B.
    J. Chem. Phys. 1999, 111, 10622-10632
  38. Instantaneous normal mode theory of condensed phase absorption.  
    Ahlborn, H. L.; Space, B.; Ji, X. D.; Moore, P. B.
    Abstracts of Papers in Amer. Chem. Soc. 1998, 216 U765-U765.
  39. Electrostatic potential surfaces and geometries of novel N-acylglycine substrates for peptididylglycine A-amidating enzyme via electronic structure calculations and comparison with crystal structures.  
    Esposito, E. X.; Juliani, J.; Space, B.
    Abstracts of Amer. Chem. Soc.1998, 216 U711-U711.
  40. The infrared spectra of water from quantum mechanical and classical instantaneous normal mode (INM) theories.  
    Ji, X. D.; Space, B., Ahlborn, H.
    Abstracts of Amer. Chem. Soc.1998, 216 U760-U760.
  41. The structural comparison of novel N-acylglycine substrates for peptidylglycine alpha-amidating enzyme through the utilization of electronic structure calculations and crystal structures.  
    Esposito, E. X.; Space, B.
    Abstracts of Amer. Chem. Soc. 1998, 215 U218-U218.
  42. The Utilization of Electronics Structure Calculations and Crystal Structures for the Structural Comparison of Novel N-Acylglycine Substrates for Peptidylglycine -Amidating Enzyme  
    Esposito, E. X.; Space, B.; Manner, B.
    Pennsylvania Academy of Science Publications 1998, 71 170-170.
  43. The structural activity relationship of novel N-Acylglycine substrates for peptidylglycine alpha-amidating enzyme through the utilization of computational chemistry.  
    Esposito, E. X.; Space, B.; Merkler, D.
    Abstracts of Amer. Chem. Soc. 1997, 214 133-CHED.
  44. The origin and molecularly detailed calculation of the effective mass of excess electrons in condensed xenon.  
    Space, B.; Bowen, F.
    Abstracts of Amer. Chem. Soc. 1997, 214 66-PHYS.
  45. NONADIABATIC DYNAMICS OF EXCESS ELECTRONS IN MOLTEN-SALTS.  
    Space, B.; Coker, D. F.
    Abstracts of Amer. Chem. Soc. 1992, 203 271-PHYS.
  46. NONADIABATIC TRAPPING AND LOCALIZATION MECHANISMS OF EXCESS ELECTRONS IN FLUIDS  
    Space, B.; Coker, D. F.
    Abstracts of Amer. Chem. Soc. 1992, 203 273-PHYS.
  47. Energetics and dynamics of excess electrons in simple fluids(Ph. D. Thesis)  
    Space, B.
    1992
  48. Dynamics of trapping and localization of excess electrons in simple fluids  
    Space, B.; Coker, D. F.
    J. Chem. Phys. 1992, - 652-663.
  49. Nonadiabatic dynamics of excited excess electrons in simple fluids  
    Space, B.; Coker, D. F.
    J. Chem. Phys. 1991, 94 1976-1984.
  50. Vibrationally resolved shape resonant photoionization of N2O  
    Kelly, L. A.; Duffy, L. M.; Space, B.; Poliakoff, E. D.; Roy, P.; Southworth, S. H.; White, M. G.
    J. Chem. Phys. 1989, 90 1544-1550.
  51. Interchannel interactions following shape resonant excitation of core electrons  
    Poliakoff, E. D.; Kelly, L. A.; Duffy, L. M.; Space, B.; Roy, P.; Southworth, S. H.; White, M. G.
    Chem. Phys. 1989, 129 65-71.
  52. Vibrationally resolved electronic autoionization of core–hole resonances  
    Poliakoff, E. D.; Kelly, L. A.; Duffy, L. M.; Space, B.; Roy, P.; Southworth, S. H.; White, M. G.
    J. Chem. Phys. 1988, 89 4048-4053.

Other Topics

  1. Poker Vocation vs. Avocation: Poker is Too Hard -- Poker is Amazing  
    Space, B.
    Two Plus Two Magazine Vol. 14, No. 10 2018, https://www.twoplustwo.com/magazine/issue166/
  2. Failures of Intuition: Building a Solid Poker Foundation through Combinatorics  
    Space, B.
    Two Plus Two Magazine Vol. 14, No. 8 2018, https://www.twoplustwo.com/magazine/issue164/
  3. Why We Bet in No-limit Hold ‘em: a Failure of Intuition  
    Phillips, D. and Space, B.
    Two Plus Two Magazine Vol. 14, No. 5 2018, https://www.twoplustwo.com/magazine/issue161/
  4. A ProAm Guide to Live Poker  
    Phillips, D.; Space, B.
    Two Plus Two Magazine Vol. 13, No. 4 2017, http://www.twoplustwo.com/magazine/issue148/
  5. Over Betting Polarized Ranges in the Short Run: How Big to Bet?  
    Space, B.
    Two Plus Two Magazine Vol. 12, No. 2 2016, http://www.twoplustwo.com/magazine/issue134/
  6. Expectation and Thin Value in No-limit Hold ‘em: Profit comes with Variance  
    Space, B.
    Two Plus Two Magazine Vol. 10, No. 9 2014, http://www.twoplustwo.com/magazine/issue117/
  7. Making a life in the physical sciences  
    Space, B.,
    Journal of Organizational Behavior 2008, 29 (6), 755-759.

Pedagogical Manuscripts

  1. Alternative Derivation of the Partition Function for Generalized Ensembles  
    Belof, J. L. and Space, B;
    Cornell University Library, arXiv preprint arXiv:1309.2017 2013