Publications

Space Group work recently featured on the back cover of ChemPhysChem:
Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht-Metal–Organic Frameworks

Prior work cited in a Wikipedia article on carbene radicals and their bonding mechanisms:
Carbene Radical

Google Scholar stats

Featured Papers

  1. Reversible transformations between the non-porous phases of a flexible coordination network enabled by transient porosity  
    Nikolayenko, V.I.; Castell, D.C.; Sensharma, D.; Shivanna, M.; Loots, L.; Forrest, K.A.; Solanilla-Salinas, C.J.; Otake, K.; Kitagawa, S.; Barbour, L.J.; Space, B.; Zaworotko, M.J.
    Nature Chemistry, 2023, DOI: 10.1038/s41557-022-01128-3
  2. Efficient propyne/propadiene separation by microporous crystalline physiadsorbents  
    YL, Peng; T, Wang; C, Jin; CH, Deng; Y, Zhao; W, Liu; Forrest, KA; Krishna, R; Chen, Y; Pham, T; Space, B; Cheng, P; Zaworotko, MJ; Zhang, Z;
    Nature Comnunications, 2021, 12, 5768 DOI: 10.1038/s41467-021-25980-y
  3. Breaking the trade-off between selectivity and adsorption capacity for gas separation  
    Kumar, N.; Mukherjee, S.; Harvey-Reid, N. C.; Bezrukov, A. A.; Tan, K.; Martins, V.; Vandichel, M.; Pham, T.; van Wyk, L.M.; Oyekan. K.; Kumar, A.; Forrest, K.A.; Patil, K.M.; Barbour, L.J.; Space, B.; Huang, Y.; Kruger, P.E.; Zaworotko, M.J.
    Chem., 2021, 15, 2451-9294, DOI: 10.1016/j.chempr.2021.07.007
  4. New Reticular Chemistry of the Rod Secondary Building Unit: Synthesis, Structure, and Natural Gas Storage of a Series of Three-Way Rod Amide-Functionalized Metal–Organic Frameworks  
    Zhang, YF; Zhang, ZH; Ritter, L; Fang, H; and Wang, Q; Space, B; Zhang, YB; Xue, DX; Bai, J.
    J. Am. Chem. Soc. 2021, DOI: : 10.1021/jacs.1c04946
  5. Benchmark acetylene binding affinity and separation through induced fit in a flexible hybrid ultramicroporous material  
    Zaworotko, M; Shivanna, M; Otake, KI; Song, BQ; van Wyk, LM; Yang, QY; Kumar, N; Feldmann, WK; Pham, T; Suepaul, S; Space, B; Barbour, LJ; Kitagawa, S.
    Angew. Chem. Int. Ed. 2021, DOI: 10.1002/anie.202106263.
  6. Next-Generation Accurate, Transferable, and Polarizable Potentials for Material Simulations  
    Hogan, A.; Space, B.
    J. Chem. Theory Comput. 2020, DOI: 10.1021/acs.jctc.0c00837.
  7. Insights into the Gas Adsorption Mechanisms in Metal-Organic Frameworks from Classical Molecular Simulations  
    Pham, Tony; Space, Brian;
    Top. Curr. Chem. 2020, 378 (1), 14.
  8. Enhanced Gas Uptake in a Microporous Metal–Organic Framework via a Sorbate Induced-Fit Mechanism.  
    Yu, M.; Space, B.; Franz, D.; Zhou, W.; He, C.; Li, L.; Krishna, R.; Chang, Z.; Li, W; Hu, T; Bu, X.
    J. Am. Chem. Soc. 2019, DOI: 10.1021/jacs.9b07807.
  9. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture.  
    Chen, K.-J.; Madden, D. G.; Mukherjee, S.; Pham, T.; Forrest, K. A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q.-Y.; Zaworotko, M. J.
    Science. 2019, 366 (6462), 241-246.
  10. MPMC and MCMD: Free High‐Performance Simulation Software for Atomistic Systems.  
    Franz, D. M.; Belof, J. L.; McLaughlin, K.; Cioce, C. R.; Tudor, B.; Hogan, A.; Laratelli, L.; Mulcair, M.; Mostrom, M.; Navas, A.; Stern, A. C.; Forrest, K. A.; Pham, T.; Space, B.
    Adv. Theory Simul. 2019, DOI: 10.1002/adts.201900113.
  11. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separations  
    Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K. A.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J.
    Nature. 2013, 495, 80-84.
  12. On the Mechanism of Hydrogen Storage in a Metal-Organic Framework Material  
    Belof, J. L.; Stern, A. C.; Eddaoudi, M.; Space, B.,
    J. Am. Chem. Soc. 2007, 129 (49), 15202-15210.
  13. Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane.  
    Li, B.; Zhang, Y.; Krishna, R.; Yao, K.; Han, Y.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S.
    J. Am. Chem. Soc. 2014, 136 (24), 8654-8660.
  14. Theoretical modeling of interface specific vibrational spectroscopy: methods and applications to aqueous interfaces  
    Perry, A.; Neipert, C.; Space, B.; Moore, P. B.,
    Chem Rev 2006, 106 (4), 1234-58.
  15. A Robust Molecular Porous Material with High CO2 Uptake and Selectivity  
    Nugent, P.S.; Rhodus, V.L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    J. Am. Chem. Soc., 2013, 135 (30), 10950–10953.
  16. Identification of a wagging vibrational mode of water molecules at the water/vapor interface  
    Perry, A.; Neipert, C.; Ridley, C.; Space, B.; Moore, P. B.,
    Physical Review E 2005, 71 (5), 050601.
    ››The predicted vibrational Wagging Mode was measured experimentally a decade later with the shape and location predicted!

Papers with Current Students

  1. Turning Normal to Abnormal: Reversing CO2/C2-Hydrocarbon Selectivity in HKUST-1  
    Mohamed, M.H.; Elzeny, I.; Samuel, J.; Xu, W.; Malliakas, C.D.; Picard, Y.N.; Pham, T.; Miller, L.; Hogan, A.; Space, B.; Hopkinson, D.; Elsaidi, S.K
    Advanced Functional Materials, 2024, 2312280 DOI:10.1002/adfm.202312280
  2. Cu-ATC vs. Cu-BTC: comparing the H2 adsorption mechanism through experiment, molecular simulation, and inelastic neutron scattering studies  
    Pham, T.; ForrestK.; Niu, Z.; Tudor, B.; Starkey, C.B.; Wang, Y.; Eddaoudi, M.; Rosi, N.; Orcajo, G.; Eckert, J.; Ma, S.; Space, B.
    J. Mater. Chem. A, 2023, 11 25386-25398 DOI:10.1039/D3TA04748B
  3. Crystal Engineering of Two Light and Pressure Responsive Physisorbents  
    Castell, D.C.; Nikolayenko, V.I.; Sensharma, D.; Koupepidou, K.; Forrest, K.A.; Solanilla-Salinas, C.J.; Space, B.; Barbour, L.J.; Zawarotko, M.J.
    Angew. Chem. Int. Ed., 2023, 62 DOI:10.1002/anie.202219039
  4. Reversible transformations between the non-porous phases of a flexible coordination network enabled by transient porosity  
    Nikolayenko, V.I.; Castell, D.C.; Sensharma, D.; Shivanna, M.; Loots, L.; Forrest, K.A.; Solanilla-Salinas, C.J.; Otake, K.; Kitagawa, S.; Barbour, L.J.; Space, B.; Zaworotko, M.J.
    Nature Chemistry, 2023, DOI: 10.1038/s41557-022-01128-3
  5. Methane storage in flexible and dynamical metal–organic frameworks  
    Forrest, K.A., Verma, G., Ye, Y., Ren, J., Ma, S., Pham, T., Space, B.
    AIP Chemical Physics Review, 2022, 3, DOI:10.1063/5.0072805
  6. Self-Adjusting Metal–Organic Framework for Efficient Capture of Trace Xenon and Krypton  
    Niu, Z.; Fan, Z.; Pham, T.; Verma, G.; Forrest, K.A.; Space, B.; Thallapally, P.K.; Al-Enizi, A.M.; Ma, S.
    Angew. Chem. Int. Ed., 2022, 61, DOI:10.1002/anie.202117807
  7. Investigating H2 Adsorption in Isostructural Metal–Organic Frameworks M-CUK-1 (M = Co and Mg) through Experimental and Theoretical Studies  
    Ye, Y.; Xian, S.; Cui, H.; Tan, K.; Gong, L.; Liang, B.; Pham, T.; Pandey; H.; Krishna, R.; Lan, P.C.; Forrest, K.A.; Space, B.; Thonhauser, T.; Li, J.; Ma, S.;
    ACS Appl. Mater. Interfaces, 2022, 14, DOI:10.1021/jacs.1c10620
  8. Metal–Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation  
    Suepaul, S; Forrest, K.A; Georgiev, P.A; Forster, P.M; Lohstroh, W; Grzimek, V; Dunning, S.G; Reynolds III, J.E; Humphrey, S.M; Eckert, J; Space, B;
    J. Am. Chem. Soc., 2022, 144, 4, 1681-1689, DOI:10.1021/acsami.1c20312
  9. Tuning the Selectivity between C2H2 and CO2 in Molecular Porous Materials  
    Forrest, K.A.; Pham, T.; Chen, K.J.; Jiang, X.; Madden, D.G.; Franz, D.M.; Hogan, A.; Zaworotko, M.J.; Space, B.
    Langmuir, 2021, 37, 47, 13838-13845, DOI:10.1021/acs.langmuir.1c02009
  10. One-step ethylene production from a four-component gas mixture by a single physisorbent  
    Cao, JW; Mukherjee, S; Pham, T; Wang, Y; Wang, T; Zhang, T; Jiang, X; Tang, HJ; Forrest, KA; Space, B; Zaworotko, M.J; Chen, KJ
    Nature Comnunications, 2021, 12, DOI: 10.1038/s41467-021-26473-8
  11. Breaking the trade-off between selectivity and adsorption capacity for gas separation  
    Kumar, N.; Mukherjee, S.; Harvey-Reid, N. C.; Bezrukov, A. A.; Tan, K.; Martins, V.; Vandichel, M.; Pham, T.; van Wyk, L.M.; Oyekan. K.; Kumar, A.; Forrest, K.A.; Patil, K.M.; Barbour, L.J.; Space, B.; Huang, Y.; Kruger, P.E.; Zaworotko, M.J.
    Chem., 2021, 15, 2451-9294.
  12. Toward an Understanding of the Propensity for Crystalline Hydrate Formation by Molecular Compounds. Part 2  
    Sanii, R.; Patyk-Kaźmierczak, E.; Hua, C.; Darwish, S.; Pham, T.; Forrest, K.A.; Space, B.; Zaworotko, M.J.
    Cryt. Growth Des., 2021, 21, 9, 4927-4939.
  13. Indium–Organic Framework with soc Topology as a Versatile Catalyst for Highly Efficient One-Pot Strecker Synthesis of α-aminonitriles  
    Verma, G.; Forrest, K.; Carr, B.A.; Vardhan, H.; Ren, J.; Pham, T.; Space, B.; Kumar, S.; Ma, S.
    ACS Appl. Mater. Interfaces 2021, 13, 44, 52023-52033
  14. Amino-Functionalised Hybrid Ultramicroporous Materials that Enable Single-Step Ethylene Purification from a Ternary Mixture  
    Mukherjee, S.; Kumar, N.; Bezrukov, A.A.; Tan, K.; Pham, T.; Forrest, K.A.; Oyekan, K.A.; Qazvini, O.T.; Madden, D.G.; Space, B.; Zaworotko, M.J.
    Angewandte Chemie 2021, 133, 19, 10997-11004
  15. A MOF‐based Ultra‐Strong Acetylene Nano‐trap for Highly Efficient C2H2/CO2 Separation  
    Niu, Z.; Cui, X.; Pham, T.; Verma, G.; Lan, P. C.; Shan, C.; Xing, H.; Forrest, K. A.; Suepaul, S.; Space, B.; Nafady, A.; Al-Enizi, A. M.; Ma, S.
    Angew. Chem., 2021, 60 (10), 5283-5288.
  16. A robust heterometallic ultramicroporous MOF with ultrahigh selectivity for propyne/propylene separation  
    Peng, Y.-L.; Wang, T.; Jin, C.; Li, P.; Suepaul, S.; Beemer, G; Chen, Y; Krishna, R; Cheng, P; Pham, T; Space, B; Zaworotko, M. J.; Zhang, Z;
    J. Mater. Chem. A, 2021, 9, 2850-2856.
  17. Metal-organic materials with triazine-based ligands: From structures to properties and applications  
    Yu, M.-H.; Liu, X.-T.; Space, B.; Chang, Z.; Bu, X.-H.;
    Coord. Chem. Rev., 2021, 427, 213518.
  18. Amino functionalised hybrid ultramicroporous materials that enable single‐step ethylene purification from a ternary mixture  
    Zaworotko, M.; Mukherjee, S.; Kumar, N.; Bezrukov, A. A.; Tan, K.; Pham, T.; Forrest, K. A.; Oyekan, K.; Qazvini, O. T.; Madden, D. G.; Space, B.
    Angew. Chem. Int. Ed. 2021, DOI: 10.1002/anie.202100240.
  19. A MOF‐based Ultra‐Strong Acetylene Nano‐trap for Highly Efficient C2H2/CO2 Separation  
    Niu, Z.; Cui, X.; Pham, T.; Verma, G.; Lan, P. C.; Shan, C.; Xing, H.; Forrest, K. A.; Suepaul, S.; Space, B.; Nafady, A.; Al-Enizi, A. M.; Ma, S.
    Angew. Chem. Int. Ed. 2020, DOI: 10.1002/anie.202016225.
  20. Next-Generation Accurate, Transferable, and Polarizable Potentials for Material Simulations  
    Hogan, A.; Space, B.
    J. Chem. Theory Comput. 2020, DOI: 10.1021/acs.jctc.0c00837.
  21. Simulations of H2 Sorption in an Anthracene-Functionalized rht-Metal–Organic Framework  
    Suepaul, S; Forrest, K. A.; Pham, T.; Space, B.
    J. Phys. Chem. C 2020, DOI: 10.1021/acs.jpcc.0c02791.
  22. A Robust soc-MOF Platform Exhibiting High Gravimetric Uptake and Volumetric Deliverable Capacity for On Board Methane Storage  
    Verma, G.; Kumar, S.; Vardhan, V.; Ren, J.; Niu, Z.; Pham, T.; Wojtas, L.; Butikofer, S.; Garcia, J. C. E.; Chen, Y.-S.; Space, B.; Ma, S.
    Nano Res. 2021, 14 (2), 512-517.
  23. Radiation-Resistant Metal-Organic Framework for Efficient Separation of Krypton Fission Gas from Spent Nuclear Fuel  
    Elsaidi, S. K.; Mohamed, M. H.; Helal, A. S.; Galanek, M.; Pham, T.; Suepaul S.; Space, B.; Hopkinson, D.; Thallapally, P. K.; Li, J.
    Nat. Commun. 2020, 11:3103
  24. Halogen–C2H2 Binding in Ultramicroporous Metal–Organic Frameworks (MOFs) for Benchmark C2H2/CO2 Separation Selectivity  
    Mukherjee, Soumya; He, Yonghe; Franz, Douglas; Wang, Shi-Qiang; Xian, Wan-Ru; Bezrukov, Andrey A.; Space, Brian; Xu, Zhengtao; He, Jun; Zaworotko, Michael J.
    Chemistry—A European Journal 2020, 26 (22), 4923–4929.
  25. Insights into the Gas Adsorption Mechanisms in Metal-Organic Frameworks from Classical Molecular Simulations  
    Pham, Tony; Space, Brian;
    Top. Curr. Chem. 2020, 378 (1), 14.
  26. Trace CO2 capture by an ultramicroporous physisorbent with low water affinity.  
    Mukherjee, S.; Sikdar, N.; O'Nolan, D.; Franz, D. M.; Gascón, V.; Kumar, A.; Kumar, N.; Scott, H. S.; Madden, D. G.; Kruger, P. E.; Space, B.; Zaworotko, M. J.
    Sci. Adv. 2019, 5 (11).
  27. Enhanced Gas Uptake in a Microporous Metal–Organic Framework via a Sorbate Induced-Fit Mechanism.  
    Yu, M.; Space, B.; Franz, D.; Zhou, W.; He, C.; Li, L.; Krishna, R.; Chang, Z.; Li, W; Hu, T; Bu, X.
    J. Am. Chem. Soc. 2019, 141 (44), 17703-17712.
  28. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture.  
    Chen, K.-J.; Madden, D. G.; Mukherjee, S.; Pham, T.; Forrest, K. A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q.-Y.; Zaworotko, M. J.
    Science. 2019, 366 (6462), 241-246.
  29. MPMC and MCMD: Free High-Performance Simulation Software for Atomistic Systems.  
    Franz, D. M.; Belof, J. L.; McLaughlin, K.; Cioce, C. R.; Tudor, B.; Hogan, A.; Laratelli, L.; Mulcair, M.; Mostrom, M.; Navas, A.; Stern, A. C.; Forrest, K. A.; Pham, T.; Space, B.
    Adv. Theory Sim. 2019, DOI: 10.1002/adts.201900113.
  30. A Microporous Co-MOF for Highly Selective CO2 Sorption in High Loadings Involving Aryl C–H···O═C═O Interactions: Combined Simulation and Breakthrough Studies  
    Pal, A.; Chand, S.; Madden, D. G.; Franz, D.; Ritter, L.; Johnson, A.; Space, B.; Curtin, T.; Das, M. C. Inorg. Chem. 2019, DOI: 10.1021/acs.inorgchem.9b01402.
  31. Molecular Sieving and Direct Visualization of CO2 in Binding Pockets of an Ultramicroporous Lanthanide MOF Platform.  
    Han, L.; Pham, T.; Zhuo, M.; Forrest, K. A.; Suepaul, S.; Space, B.; Zaworotko, M. J.; Shi, W.; Chen, Y.; Cheng, P.; Zhang, Z.
    ACS Appl. Mater. Interfaces 2019, 11 (26), 23192–23197.
  32. Investigating CO2 Sorption in SIFSIX-3-M (M = Fe, Co, Ni, Cu, Zn) Through Computational Studies  
    Forrest, K. A.; Pham, T.; Elsaidi, S. K.; Mohamed, M.; Thallapally, P. K.; Zaworotko, M. J.; Space, B.
    Cryst. Growth Des. 2019, 19 (7), 3732–3743.
  33. A Metal–Organic Framework Based Methane Nano‐trap for the Capture of Coal‐Mine Methane  
    Niu, Z.; Cui, X.; Pham, T.; Lan, P. C.; Xing, H.; Forrest, K. A.; Wojtas, L.; Space, B.; Ma, S.
    Angew. Chem. Int. Ed. 2019, <9>58 (30), 10138-10141.
  34. Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene  
    Chen, B. , Peng, Y. , He, C. , Pham, T. , Wang, T. , Li, P. , Krishna, R. , Forrest, K. , Hogan, A. , Suepaul, S. , Space, B. , Fang, M. , Chen, Y. , Zaworotko, M. , Li, J. , Cheng, P. , Li, L.; Zhang, Z.
    Angew. Chem. Int. Ed. 2019, 58 (30), 10209-10214.
  35. Highly selective CO2 removal for one-step liquefied natural gas processing by physisorbents  
    Madden, D. G.; O’Nolan, D.; Chen, K.-J.; Hua, C.; Kumar, A.; Pham, T.; Forrest, K. A.; Space, B.; Perry IV, J. J.; Khraisheh, M.; Zaworotko, M. J.
    Chem. Commun. 2019, 55 (22), 3219–3222.
  36. Hydrogen Adsorption in a Zeolitic Imidazolate Framework with lta Topology  
    Pham, T.; Forrest, K. A.; Furukawa, H.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2018, 122 (27), 15435–15445.
  37. Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene  
    Peng, Y.; Pham, T.; Li, P.; Wang, T.; Chen, Y.; Chen, K.-J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J.; Zhang, Z.
    Angew. Chem. Int. Ed. 2018, 57 (34), 10971–10975
  38. Investigating C2H2 Sorption in a–[M3(O2CH)6] (M = Mg, Mn) Through Theoretical Studies  
    Forrest, K. A.; Franz, D. M.; Pham, T.; Space, B.
    Cryst. Growth Des. 2018, 18 (9), 5342 - 5352.
  39. Readily accessible shape-memory effect in a porous interpenetrated coordination network  
    Shivanna, M.; Yang, Q.-Y.; Bajpai, A.; Sen, S.; Hosono, N.; Kusaka, S.; Pham, T.; Forrest, K. A.; Space, B.; Kitagawa, S.; Zaworotko, M. J.
    Sci. Adv. 2018, DOI: DOI: 10.1126/sciadv.aaq1636.
  40. Theoretical study of the effect of halogen substitution in molecular porous materials for CO2 and C2H2 sorption  
    Franz, D. M.; Djulbegovic, M.; Pham, T.; Space, B.
    AIMS Mater. Sci. 2018, 5 (2), 226–245.
  41. Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance  
    O’Nolan, D.; Madden, D. G.; Kumar, A.; Chen, K.-J.; Pham, T.; Forrest, K. A.; Patyk-Kazmierczak, E.; Yang, Q.-Y.; Murray, C. A.; Tang, C. C.; Space, B.; Zaworotko, M. J.
    Chem. Commun. 2018, 54 (28), 3488–3491.
  42. Efficient CO2 Removal for Ultra-Pure CO Production by Two Hybrid Ultramicroporous Materials  
    Chen, K.-J.; Yang, Q.-Y.; Sen, S.; Madden, D. G.; Kumar, A.; Pham, T.; Forrest, K. A.; Hosono, N.; Space, B.; Kitagawa, S.; Zaworotko, M. J.
    Angew. Chem. Int. Ed. 2018, 57 (13), 3332–3336.
  43. A Stable Metal–Organic Framework Featuring Local Buffer Environment for Carbon Dioxide Fixation  
    He, H.; Sun, Q.; Gao, W.; Perman, J. A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S.
    Angew. Chem. Int. Ed. 2018, 57 (17), 4657–4662.
  44. Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal–organic framework.  
    Franz, D.; Dyott, Z.; Forrest, K.; Hogan, A.; Pham, T.; Space, B.
    Phys. Chem. Chem. Phys. 2018, 20, 1761 - 1777. DOI: 10.1039/c7cp06885a.
  45. Investigating gas sorption in an rht-metal–organic framework with 1,2,3-triazole groups.  
    Forrest, K. A.; Pham, T.; Space, B.
    Phys. Chem. Chem. Phys. 2017, 19, 29204 - 29221.
  46. The effect of centred versus offset interpenetration on C2H2 sorption in hybrid ultramicroporous materials.  
    Bajpai, A.; O’Nolan, D.; Madden, D. G.; Chen, K.-J.; Pham, T.; Kumar, A.; Lusi, M.; Perry IV, J. J.; Space, B.; Zaworotko, M. J.
    Chem. Commun., 2017 53 (84), 11592–11595, DOI: 10.1039/C7CC05882A.
  47. Experimental and Theoretical Investigations of the Gas Adsorption Sites in rht-Metal–Organic Frameworks.  
    Pham, T.; Forrest, K. A.; Franz, D.; Space, B.
    CrystEngComm, 2017, 19 (32), 4646–4665.
  48. Comparing the mechanism and energetics of CO2 sorption in the SIFSIX series.  
    Forrest, K. A.; Pham, T.; Space, B.
    CrystEngComm, 2017, 19 (24), 3338–3347.
  49. Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes.  
    Pham, T.; Forrest, K. A.; Franz, D. M.; Guo, Z.; Chen, B.; Space, B.
    Phys. Chem. Chem. Phys., 2017, 19 (28), 18587–18602.
  50. The rotational dynamics of H2 adsorbed in covalent organic frameworks.  
    Pham, T.; Forrest, K. A.; Mostrom, M.; Hunt, J. R.; Furukawa, H.; Eckert, J.; Space, B.
    Phys. Chem. Chem. Phys. 2017, 19 (20), 13075–13082.
  51. Fine Tuning of MOF-505 Analogues to Reduce Low Pressure Methane Uptake and Enhance Methane Working Capacity.  
    Zhang, M.; Zhou, W.; Pham, T.; Forrest, K. A.; Liu, W.; He, Y.; Wu, H.; Yildirim, T.; Chen, B.; Space, B.; Pan, Y.; Zaworotko, M. J.; Bai, J.
    Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201704974.
  52. Highly selective separation of C2H2 from CO2 by a new dichromate-based Hybrid Ultramicroporous Material.  
    Scott, H. S.; Shivanna, M.; Bajpai, A.; Madden, D.; Chen, K.-J.; Pham, T.; Forrest, K.; Hogan, A.; Space, B.; Perry IV, J.; Zaworotko, M.
    ACS Appl. Mater. Interfaces 2017, 9 (39), 33395-33400.
  53. High H2 Sorption Energetics in Zeolitic Imidazolate Frameworks.  
    Pham, T.; Forrest, K. A.; Furukawa, H.; Russina, M.; Albinati, A.; Georgiev, P. A.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2017, 121 (3), 1723–1733. DOI: 10.1021/acs.jpcc.6b1146
  54. Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks.  
    Elsaidi, S. K.; Mohamed, M. H.; Simon, C. M.; Braun, E.; Pham, T.; Forrest, K. A.; Xu, W.; Banerjee, D.; Space, B.; Zaworotko, M. J.; Thallapally, P. K.
    Chem. Sci. 8(3) 2373-2380 2017. DOI: 10.1039/C6SC05012C
  55. Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials.  
    Chen, K.-J.; Scott, H. S.; Madden, D. G.; Pham, T.; Kumar, A.; Bajpai, A.; Lusi, M.; Forrest, K. A.; Space, B.; Perry IV, J. J.; Zaworotko, M. J.
    Chem 2016, 1(5), 753–765. DOI: http://dx.doi.org/10.1016/j.chempr.2016.10.009
  56. Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds.  
    Bajpai, A.; Scott, H. S.; Pham, T.; Chen, K.-J.; Space, B.; Lusi, M.; Perry, M. L.; Zaworotko, M. J.
    IUCrJ 2016, 3 (6), 430-439. DOI: 10.1107/S2052252516015633.
  57. Theoretical Investigations of CO2 and H2 Sorption in Robust Molecular Porous Materials  
    Pham, T.; Forrest, K. A.; Chen, K.-J.; Kumar, A.; Zaworotko, M. J.; Space, B.
    Langmuir 2016 32(44), 11492-11505. DOI: 10.1021/acs.langmuir.6b03161
  58. Accurate H2 Sorption Modeling in the rht-MOF NOTT-112 Using Explicit Polarization.  
    Franz, D.; Forrest, K. A.; Pham, T.; Space, B.
    Cryst. Growth Des. 2016, DOI: 10.1021/acs.cgd.6b01058.
  59. Tuning Pore Size in Square-Lattice Networks for Size-Selective Sieving of CO2.  
    Chen, K.-J.; Madden, D. G.; Pham, T.; Forrest, K. A.; Kumar, A.; Yang, Q.-Y.; Xue, W.; Space, B.; Perry IV, J. J.; Zhang, J.-P.; Chen, X.-M.; Zaworotko, M. J.
    Angew. Chem. Int. Ed. 2016, 55 (35), 10268–10272.
  60. An unusual H2 sorption mechanism in PCN-14: insights from molecular simulation.  
    Pham, T.; Forrest, K. A.; Space, B.
    Phys. Chem. Chem. Phys. 2016, 18, 21421 - 21430
  61. Dynamics of H2 adsorbed in porous materials as revealed by computational analysis of inelastic neutron scattering spectra.  
    Pham, T.; Forrest, K. A.; Space, B.; Eckert, J.
    Phys. Chem. Chem. Phys. 2016, 18, 17141–17158.
  62. Hybrid Ultra-Microporous Materials for Selective Xe Adsorption and Separation.  
    Mohamed, M. H.; Elsaidi, S. K.; Pham, T.; Forrest, K. A.; Schaef, H. T.; Hogan, A.; Wojtas, L.; Xu, W.; Space, B.; Zaworotko, M. J.; Thallapally, P. K.
    Angew. Chem. Int. Ed. 2016, 55 (29), 8285–8289. .
  63. Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers.  
    Scott, H. S.; Ogiwara, N.; Chen, K.-J.; Madden, D. G.; Pham, T.; Forrest, K.; Space, B.; Horike, S.; Perry IV, J. J.; Kitagawa, S.; Zaworotko, M. J.
    Chem. Sci. 2016, 7, 5470–5476.
  64. Exceptional H2 sorption characteristics in a Mg2+-based metal–organic framework with small pores: insights from experimental and theoretical studies.  
    Pham, T.; Forrest, K. A.; Falcão, E. H. L.; Eckert, J.; Space, B.
    Phys. Chem. Chem. Phys. 2016, 18(3), 1786–1796.
  65. Dramatic Effect of the Electrostatic Parameters on H2 Sorption in an M-MOF-74 Analogue.  
    Pham, T.; Forrest, K. A.; Eckert, J.; Space, B.
    Cryst. Growth Des. 2016, 16(2), 867–874.
  66. Crystal Engineering of a 4,6-c fsc Platform That Can Serve as a Carbon Dioxide Single-Molecule Trap.  
    Elsaidi, S. K.; Mohamed, M. H.; Pham, T.; Hussein, T.; Wojtas, L.; Zaworotko, M. J.; Space, B.
    Cryst. Growth Des. 2016, 16(2), 1071–1080.
  67. Inelastic Neutron Scattering and Theoretical Studies of H2 Sorption in a Dy(III)-Based Phosphine Coordination Material.  
    Forrest, K. A.; Pham, T.; Georgiev, P. A.; Embs, J. P.; Waggoner, N. W.; Hogan, A.; Humphrey, S. M.; Eckert, J.; Space, B.
    Chem. Mater. 2015, 27, 7619–7626.
  68. Correction: Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas.
    Elsaidi, S. K.; Mohamed, M. H.; Schaef, H. T.; Kumar, A.; Lusi, M.; Pham, T.; Forrest, K. A.; Space, B.; Xu, W.; Halder, G. J.; Liu, J.; Zaworotko, M. J.; Thallapally, P. K.
    Chem. Commun. 2015, 51 16872–16872.
  69. Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht-Metal–Organic Frameworks.  
    Pham, T.; Forrest, K. A.; Gao, W.-Y.; Ma, S.; Space, B.
    ChemPhysChem 2015, 16(15), 3170–3179.
  70. Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas.  
    Elsaidi, S. K.; Mohamed, M. H.; Schaef, H. T.; Kumar, A.; Lusi, M.; Pham, T.; Forrest, K. A.; Space, B.; Xu, W.; Halder, G. J.; Liu, J.; Zaworotko, M. J.; Thallapally, P. K.
    Chem. Commun. 2015, 51, 15530-15533.
  71. Novel mode of 2-fold interpenetration observed in a primitive cubic network of formula [Ni(1,2-bis(4-pyridyl)acetylene)2(Cr2O7)]n.  
    Scott, H. S.; Bajpai, A.; Chen, K.-J.; Pham, T; Space, B; Perry, J. J.; Zaworotko, M. J.
    Chem. Commun. 2015, 51, 14832-14835.
  72. Investigating H2 Sorption in a Fluorinated Metal–Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering.  
    Forrest, K. A.; Pham, T.; Georgiev, P. A.; Pinzan, F.; Cioce, C. R.; Unruh, T.; Eckert, J.; Space, B.
    Langmuir 2015, 31, 7328-7336.
  73. The local electric field favours more than exposed nitrogen atoms on CO2 capture: a case study on the rht-type MOF platform  
    Gao, W.-Y.; Pham, T.; Forrest, K. A.; Space, B.; Wojtas, L.; Chen, Y.-S.; Ma, S.
    Chem. Commun. 2015, 51, 9636-9639.
  74. Understanding Hydrogen Sorption in In-soc-MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions  
    Pham, T.; Forrest, K. A.; Hogan, A.; Tudor, B.; McLaughlin, K.; Belof, J. L.; Eckert, J.; Space, B.
    Cryst. Growth Des. 2015, 15, 1460-1471.
  75. Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation  
    Zhang, Y.; Li, B.; Krishna, R.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Forrest, K.; Space, B.; Ma, S.
    Chem. Commun. 2015, 51, 2714–2717.
  76. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks  
    Gao, W.; Cai, R.; Pham, T.; Forrest, K.; Hogan, A.; Nugent, P.; Williams, K.; Wojtas, L.; Luebke, R.; Weselinski, L; Zaworotko, M.; Space, B.; Chen, Y; Eddaoudi, M; Shi, X.; Ma, S
    Chem. Mater. 2015, 27 (6), pp 2144–2151.
  77. Understanding the H2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn).  
    Pham, T.; Forrest, K.A.; Banerjee, R.; Orcajo, G.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2015, 119 (2), pp 1078–1090.
  78. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface.  
    Green, A.J.; Space, B.
    J. Phys. Chem. B. 2015, 119, 9219–9224.
  79. Modeling PCN-61 and PCN-66: Isostructural rht-Metal–Organic Frameworks with Distinct CO2 Sorption Mechanisms.  
    Pham, T.; Forrest, K. A.; McDonald, K.; Space, B.
    Cryst. Growth Des. 2014, 14, 5599–5607.
  80. Capturing the H2–Metal Interaction in Mg-MOF-74 Using Classical Polarization.  
    Pham, T.; Forrest, K. A.; McLaughlin, K.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2014, 118, 22683–22690.
  81. A high rotational barrier for physisorbed hydrogen in an fcu-metal–organic framework.  
    Pham, T.; Forrest, K.A.; Georgiev, P.; Lohstroh, W.; Xue, D.-X.; Hogan, A.; Eddaoudi, M.; Space, B.; Eckert, J.
    Chem. Commun. 2014, 50, 14109-14112.
  82. Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials.  
    Nugent, P.; Pham, T.; McLaughlin, K.; Georgiev, P.; Lohstroh, W.; Embs, J. P.; Zaworotko, M. J.; Space, B.; Eckert, J.
    J. Mater. Chem. A 2014, 2, 13884-13891.
  83. Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane.  
    Li, B.; Zhang, Y.; Krishna, R.; Yao, K.; Han, Y.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S.
    J. Am. Chem. Soc. 2014, 136 (24), 8654-8660.
  84. Insights into an intriguing gas sorption mechanism in a polar metal–organic framework with open-metal sites and narrow channels.  
    Forrest, K. A.; Pham, T.; McLaughlin, K.; Hogan, A.; Space, B.
    Chem. Commun. 2014, 50, 7283-7286.
  85. Theoretical Investigations of CO2 and CH4 Sorption in an Interpenetrated Diamondoid Metal–Organic Material  
    Pham, T.; Forrest, K. A.; Tudor, B.; Elsaidi, S. K.; Mohamed, M. H.; McLaughlin K.; Cioce, C. R.; Zaworotko, M. J.; Space, B.
    Langmuir 2014, 30(22), 6454–6462. [Featured Article]
  86. Putting the Squeeze on CH4 and CO2 through Control over Interpenetration in Diamondoid Nets.  
    Elsaidi, S. K.; Mohamed, M. H.; Wojtas, L.; Chanthapally, A.; Pham, T.; Space, B.; Vittal, J. J. Zaworotko, M. J.
    J. Am. Chem. Soc. 2014, 136, 5072–5077.
  87. Simulations of Hydrogen Sorption in rht-MOF-1: Identifying the Binding Sites Through Explicit Polarization and Quantum Rotation Calculations.  
    Pham, T.; Forrest, K. A.; Hogan, A.; McLaughlin, K.; Belof, J. L.; Eckert, J.; Space, B.
    J. Mater. Chem A 2014, 2, 2088–2100.
  88. Investigating the Gas Sorption Mechanism in an rht-Metal–Organic Framework Through Computational Studies.  
    Pham, T.; Forrest, K. A.; Eckert, J.; Georgiev, P. A.; Mullen, A.; Luebke, R.; Cairns, A. J.; Belmabkhout, Y.; Eubank, J. F.; McLaughlin, K.; Lohstroh, W.; Eddaoudi, M.; Space, B.
    J. Phys. Chem. C 2014, 118, 439–456.
  89. Efficient calculation of many-body induced electrostatics in molecular systems.  
    McLaughlin, K.; Cioce, C. R.; Pham, T.; Belof, J. L.; Space, B.
    J. Chem. Phys. 2013, 139, 184112.
  90. A Polarizable and Transferable PHAST N2 Potential For Use in Materials Simulation.  
    Cioce, C. R.; McLaughlin, K.; Belof, J. L.; Space B.
    J. Chem. Theory Comput. 2013, 9, 5550–5557.
  91. A Polarizable and Transferable PHAST CO2 Potential For Materials Simulation.  
    Mullen, A. L.; Pham, T.; Forrest, K. A.; Cioce, C. R.; McLaughlin, K.; Space, B.
    J. Chem. Theory Comput. 2013, 9, 5421–5429.
  92. Solving the Many-Body Polarization Problem on GPUs: Application to MOFs.  
    Tudor, B.; Space, B.
    J. Comput. Sci. Ed. 2013, 4, 30–34.
  93. Pillar substitution modulates CO2 affinity in “mmo” topology networks  
    Mohamed, M.H.; Elsaidi, S.K.; Pham, T.; Forrest, K.A.; Tudor, B.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    Chem. Commun., 2013, 49, 9809–9811.
  94. Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO2 Sorption in [Cu(bpy)2SiF6]  
    Forrest, K.A.; Pham, T.; Nugent, P.; Burd, S.D.; Mullen, A.; Wojtas, L.; Zaworotko, M.J.; Space, B.
    Cryst. Growth Des., 2013, 13 (10), 4542–4548.
  95. Computational Studies of CO2 Sorption and Separation in an Ultramicroporous Metal–Organic Material  
    Forrest, K.A.; Pham, T.; Hogan, A.; McLaughlin, K.; Tudor, B.; Nugent, P.; Burd, S.D.; Mullen, A.; Cioce, C.R.; Wojtas, L.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (34), 17687–17698.
  96. A Robust Molecular Porous Material with High CO2 Uptake and Selectivity  
    Nugent, P.S.; Rhodus, V.L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    J. Am. Chem. Soc., 2013, 135 (30), 10950–10953.
  97. Understanding Hydrogen Sorption in a Metal–Organic Framework with Open Metal Sites and Amide Functional Groups  
    Pham, T.; Forrest, K. A.; Nugent, P.; Belmabkhout, Y.; Luebke, R.; Eddaoudi, M.; Zaworotko, M. J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (18), 9340–9354.
  98. Theoretical Investigations of CO2 and H2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material  
    Pham, T.; Forrest, K.; McLaughlin, K.; Tudor, B.; Nugent, P.; Hogan, A.; Mullen, A.; Cioce, C.R.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (19), 9970–9982.
  99. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separations  
    Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K. A.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J.
    Nature. 2013, 495, 80-84.
  100. Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution  
    Nugent, P.; Rhodus, V.; Pham, T.; Tudor, B.; Forrest, K.A.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    Chem. Commun., 2013, 49, 1606-1608.
  101. Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61  
    Forrest, K.A.; Pham, T.; McLaughlin, K.; Belof, J.L.; Stern, A.C.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2012, 116 (29), 15538–15549.
  102. Highly Selective CO2 Uptake in Uninodal 6-Connected “mmo” Nets Based upon MO42– (M = Cr, Mo) Pillars  
    Mohamed, M.H.; Elsaidi, S.K.; Wojtas, L.; Pham, T.; Forrest, K.A.; Tudor, B.; Space, B.; Zaworotko, M.J.
    J. Am. Chem. Soc., 2012, 134 (48), 19556-19559.

Past Work

  1. A molecular H2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions  
    McLaughlin, K.; Cioce, C. R.; Belof, J. L.; Space, B.,
    J. Chem. Phys. 2012, 136 (19).
  2. Erratum: “A molecular H2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions” [J. Chem. Phys.136, 194302 (2012)]  
    McLaughlin, K.; Cioce, C. R.; Belof, J. L.; Space, B.,
    J. Chem. Phys. 2012, 137 (12), 129901.
  3. Understanding hydrogen sorption in a polar metal-organic framework with constricted channels  
    Stern, A. C.; Belof, J. L.; Eddaoudi, M.; Space, B.,
    J. Chem. Phys. 2012, 136, 034705.
  4. Hydrogen adsorbed in a metal organic framework-5: Coupled translation-rotation eigenstates from quantum five-dimensional calculations  
    Matanovic, I.; Belof, J. L.; Space, B.; Sillar, K.; Sauer, J.; Eckert, J.; Bacic, Z.,
    J. Chem. Phys. 2012, 137, 014701.
  5. A theoretical study of the sum frequency vibrational spectroscopy of the carbon tetrachloride/water interface  
    Green, A. J.; Perry, A.; Moore, P. B.; Space, B.
    Journal of Physics: Condensed Matter 2012, 24 (12), 124108.
  6. Characterization of Tunable Radical Metal-Carbenes: Key Intermediates in Catalytic Cyclopropanation  
    Belof, J. L.; Cioce, C. R.; Xu, X.; Zhang, X. P.; Space, B.; Woodcock, H. L.,
    Organometallics 2011, 30 (10), 2739-2746.
  7. Atomic Charges Derived from Electrostatic Potentials for Molecular and Periodic Systems  
    Chen, D.-L.; Stern, A. C.; Space, B.; Johnson, J. K.,
    J. Phys. Chem. A 2010, (114), 10225–10233.
  8. Evidence for Substrate Preorganization in the Peptidylglycine α-Amidating Monooxygenase Reaction Describing the Contribution of Ground State Structure to Hydrogen Tunneling  
    McIntyre, N. R.; Lowe, E. W.; Belof, J. L.; Ivkovic, M.; Shafer, J.; Space, B.; Merkler, D. J.,
    J. Am. Chem. Soc. 2010, 132 (46), 16393-16402.
  9. Dielectric analysis of poly(methyl methacrylate) zinc(II) mono-pinacolborane diphenylporphyrin composites  
    Hilker, B; Fields, K. B.; Stern, A.; Space, B.; Zhang, X. P.; Harmon, J. P.
    Polymer 2010, 51 (21), 4790-4805.
  10. A Predictive Model of Hydrogen Sorption for Metal-Organic Materials  
    Belof, J. L.; Stern, A. C.; Space, B.,
    J. Phys. Chem. C 2009, 113 (21), 9316-9320.
  11. Making a life in the physical sciences  
    Space, B.,
    Journal of Organizational Behavior 2008, 29 (6), 755-759.
  12. Photophysical Studies of the Trans to Cis Isomerization of the Push-Pull Molecule: 1-(Pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene (mepepy)  
    Mokdad, A.; Belof, J. L.; Yi, S. W.; Shuler, S. E.; McLaughlin, M. L.; Space, B.; Larsen, R. W.,
    J. Phys. Chem. A 2008, 112 (36), 8310-8315.
  13. An Accurate and Transferable Intermolecular Diatomic Hydrogen Potential for Condensed Phase Simulation  
    Belof, J. L.; Stern, A. C.; Space, B.,
    J. Chem. Theory Comput. 2008, 4 (8), 1332-1337.
  14. A Distributed Hyperpolarizability Model for Liquid Water  
    Neipert, C.; Space, B.,
    Comput. Lett., 2007, 3 (111), 431-440.
  15. Generalized Computational Time Correlation Function Approach: Quantifying Quadrupole Contributions to Vibrationally Resonant Second-Order Interface-Specific Optical Spectroscopies.  
    Neipert, C.; Space, B.; Roney, A. B.
    J. Phys. Chem. C, 2007, 117 (111), 8749–8756.
  16. On the Mechanism of Hydrogen Storage in a Metal-Organic Framework Material  
    Belof, J. L.; Stern, A. C.; Eddaoudi, M.; Space, B.,
    J. Am. Chem. Soc. 2007, 129 (49), 15202-15210.
  17. A combined photothermal and molecular dynamics method for determining molecular volume changes  
    Ridley, C.; Stern, A. C.; Green, T.; DeVane, R.; Space, B.; Miksosvska, J.; Larsen, R. W.,
    Chemical Physics Letters 2006, 418 (1-3), 137-141.
  18. Theoretical modeling of interface specific vibrational spectroscopy: methods and applications to aqueous interfaces  
    Perry, A.; Neipert, C.; Space, B.; Moore, P. B.,
    Chem Rev 2006, 106 (4), 1234-58.
  19. Theoretical Investigation of the Temperature Dependence of the Fifth-Order Raman Response Function of Fluid and Liquid Xenon  
    DeVane, R.; Kasprzyk, C.; Space, B.; Keyes, T.,
    J. Phys. Chem. B, 2006, 110(8), 3773–3781.
  20. A time correlation function theory describing static field enhanced third order optical effects at interfaces  
    Neipert, C.; Space, B.,
    J. Chem. Phys. 2006, 125, 224706.
  21. Time correlation function and finite field approaches to the calculation of the fifth order Raman response in liquid xenon  
    DeVane, R.; Space, B.; Jansen, T. I. C.; Keyes, T.,
    J. Chem. Phys. 2006, 125, 234501.
  22. Identification of a wagging vibrational mode of water molecules at the water/vapor interface  
    Perry, A.; Neipert, C.; Ridley, C.; Space, B.; Moore, P. B.,
    Physical Review E 2005, 71 (5), 050601.
  23. A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface  
    Perry, A.; Neipert, C.; Kasprzyk, C. R.; Green, T.; Space, B.; Moore, P. B.,
    J. Chem. Phys. 2005, 123 (144705).
  24. Applications of a time correlation function theory for the fifth-order Raman response function I: Atomic liquids  
    DeVane, R.; Ridley, C.; Space, B.; Keyes, T.,
    J. Chem. Phys. 2005, 123 (194507).
  25. A Molecular Dynamics Study of Aggregation Phenomena in Aqueous n-Propanol  
    Roney, A. B.; Space, B.; Castner, E. W.; Napoleon, R. L.; Moore, P. B.,
    J. Phys. Chem. B 2004, 108 (22), 7389-7401.
  26. Tractable theory of nonlinear response and multidimensional nonlinear spectroscopy  
    DeVane, R.; Ridley, C.; Space, B.; Keyes, T.,
    Phys. Rev. E 2004, 70.
  27. A time correlation function theory of two-dimensional infrared spectroscopy with applications to liquid water  
    DeVane, R.; Space, B.; Perry, A.; Neipert, C.; Ridley, C.; Keyes, T.,
    J. Chem. Phys. 2004 121, 3688
  28. A combined time correlation function and instantaneous normal mode study of the sum frequency generation spectroscopy of the water/vapor interface  
    Perry, A.; Ahlborn, H.; Space, B.; Moore, P. B.,
    J. Chem. Phys. 2003, 118 (18), 8411-8419.
  29. A Molecular Dynamics Method for Calculating Molecular Volume Changes Appropriate for Biomolecular Simulation  
    DeVane, R.; Ridley. C.; Larsen, R.W.; Space, B; Moore, P.B.; Chan, S.I.
    Biophysical Journal 2003 85, 2801-2807
  30. A time correlation function theory for the fifth order Raman response function with applications to liquid CS2  
    DeVane, R.; Ridley. C.; Space, B; Keyes, T.
    J. Chem. Phys. 2003 119, 6073
  31. A Combined Time Correlation Function and Instantaneous Normal Mode Investigation of Liquid-State Vibrational Spectroscopy  
    Moore, P.B.; Ahlborn, H.; Space, B.
    Liquid Dynamics 2002 Chapter 3, 30-43
  32. A Novel Technique for the Measurement of Polarization-Specific Ultrafast Raman Responses  
    Constantine, S.; Gardecki, J.A.; Zhou, Y.; Ziegler, L.D.
    J. Phys. Chem. A, 2001, 105 (43), 9851–9898
  33. A theoretical investigation of the temperature dependence of the optical Kerr effect and Raman spectroscopy of liquid CS2  
    Ji, X.; Ahlborn, H.; Space, B.; Moore, P.B.
    J. Chem. Phys., 2000, 113, 8693
  34. A combined instantaneous normal mode and time correlation function description of the optical Kerr effect and Raman spectroscopy of liquid CS2  
    Ji, X. D.; Alhborn, H.; Space, B.; Moore, P. B.; Zhou, Y.; Constantine, S.; Ziegler, L. D.
    J. Chem. Phys. 2000, 112 (9), 4186-4192.
  35. An atomically detailed description of metal–dielectric interfaces: The crossover from surface to bulk conducting properties of Ag–Xe  
    Shah, V.; Bowen, H.F.; Space, B.
    J. Chem. Phys. 2000, 112, 10998
  36. The effect of isotopic substitution and detailed balance on the infrared spectroscopy of water: A combined time correlation function and instantaneous normal mode analysis  
    Alhborn, H.; Space, B.; Moore, P.B.
    J. Chem. Phys. 2000, 112, 8083
  37. A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water.  
    Alhborn, H.; Ji, X.; Space, B.; Moore, P.B.
    J. Chem. Phys. 1999, 111, 10622-10632
  38. Instantaneous normal mode theory of condensed phase absorption.  
    Ahlborn, H. L.; Space, B.; Ji, X. D.; Moore, P. B.
    Abstracts of Papers in Amer. Chem. Soc. 1998, 216 U765-U765.
  39. Electrostatic potential surfaces and geometries of novel N-acylglycine substrates for peptididylglycine A-amidating enzyme via electronic structure calculations and comparison with crystal structures.  
    Esposito, E. X.; Juliani, J.; Space, B.
    Abstracts of Amer. Chem. Soc.1998, 216 U711-U711.
  40. The infrared spectra of water from quantum mechanical and classical instantaneous normal mode (INM) theories.  
    Ji, X. D.; Space, B., Ahlborn, H.
    Abstracts of Amer. Chem. Soc.1998, 216 U760-U760.
  41. The structural comparison of novel N-acylglycine substrates for peptidylglycine alpha-amidating enzyme through the utilization of electronic structure calculations and crystal structures.  
    Esposito, E. X.; Space, B.
    Abstracts of Amer. Chem. Soc. 1998, 215 U218-U218.
  42. The Utilization of Electronics Structure Calculations and Crystal Structures for the Structural Comparison of Novel N-Acylglycine Substrates for Peptidylglycine -Amidating Enzyme  
    Esposito, E. X.; Space, B.; Manner, B.
    Pennsylvania Academy of Science Publications 1998, 71 170-170.
  43. The structural activity relationship of novel N-Acylglycine substrates for peptidylglycine alpha-amidating enzyme through the utilization of computational chemistry.  
    Esposito, E. X.; Space, B.; Merkler, D.
    Abstracts of Amer. Chem. Soc. 1997, 214 133-CHED.
  44. The origin and molecularly detailed calculation of the effective mass of excess electrons in condensed xenon.  
    Space, B.; Bowen, F.
    Abstracts of Amer. Chem. Soc. 1997, 214 66-PHYS.
  45. NONADIABATIC DYNAMICS OF EXCESS ELECTRONS IN MOLTEN-SALTS.  
    Space, B.; Coker, D. F.
    Abstracts of Amer. Chem. Soc. 1992, 203 271-PHYS.
  46. NONADIABATIC TRAPPING AND LOCALIZATION MECHANISMS OF EXCESS ELECTRONS IN FLUIDS  
    Space, B.; Coker, D. F.
    Abstracts of Amer. Chem. Soc. 1992, 203 273-PHYS.
  47. Energetics and dynamics of excess electrons in simple fluids(Ph. D. Thesis)  
    Space, B.
    1992
  48. Dynamics of trapping and localization of excess electrons in simple fluids  
    Space, B.; Coker, D. F.
    J. Chem. Phys. 1992, - 652-663.
  49. Nonadiabatic dynamics of excited excess electrons in simple fluids  
    Space, B.; Coker, D. F.
    J. Chem. Phys. 1991, 94 1976-1984.
  50. Vibrationally resolved shape resonant photoionization of N2O  
    Kelly, L. A.; Duffy, L. M.; Space, B.; Poliakoff, E. D.; Roy, P.; Southworth, S. H.; White, M. G.
    J. Chem. Phys. 1989, 90 1544-1550.
  51. Interchannel interactions following shape resonant excitation of core electrons  
    Poliakoff, E. D.; Kelly, L. A.; Duffy, L. M.; Space, B.; Roy, P.; Southworth, S. H.; White, M. G.
    Chem. Phys. 1989, 129 65-71.
  52. Vibrationally resolved electronic autoionization of core–hole resonances  
    Poliakoff, E. D.; Kelly, L. A.; Duffy, L. M.; Space, B.; Roy, P.; Southworth, S. H.; White, M. G.
    J. Chem. Phys. 1988, 89 4048-4053.

Other Topics

  1. GTO, the Value of Information, and the Nature of the Solution to No-limit Hold 'em  
    Space, B.
    Two Plus Two Magazine Vol. 16, No. 10 2020, https://www.twoplustwo.com/magazine/issue190/
  2. A Gambler’s Guide to Free Will in a Deterministic Universe, Part II 
    Space, B.
    Two Plus Two Magazine Vol. 16, No. 8 2020, https://www.twoplustwo.com/magazine/issue188/
  3. A Gambler’s Guide to Free Will in a Deterministic Universe, Part I 
    Space, B.
    Two Plus Two Magazine Vol. 16, No. 7 2020, https://www.twoplustwo.com/magazine/issue187/
  4. Poker as War: Reducible & Quantum Games, Randomness and Free Will? 
    Space, B.
    Two Plus Two Magazine Vol. 15, No. 9 2019, https://www.twoplustwo.com/magazine/issue177/
  5. Quacking the Duckman: Building a Poker Strategy 
    Space, B.
    Two Plus Two Magazine Vol. 15, No. 8 2019, https://www.twoplustwo.com/magazine/issue176/
  6. Short Deck Hand Probabilities -- And the Winner is ? 
    Space, B.
    Two Plus Two Magazine Vol. 15, No. 3 2019, https://www.twoplustwo.com/magazine/issue171/
  7. Poker Vocation vs. Avocation: Poker is Too Hard -- Poker is Amazing  
    Space, B.
    Two Plus Two Magazine Vol. 14, No. 10 2018, https://www.twoplustwo.com/magazine/issue166/
  8. Failures of Intuition: Building a Solid Poker Foundation through Combinatorics  
    Space, B.
    Two Plus Two Magazine Vol. 14, No. 8 2018, https://www.twoplustwo.com/magazine/issue164/
  9. Why We Bet in No-limit Hold ‘em: a Failure of Intuition  
    Phillips, D. and Space, B.
    Two Plus Two Magazine Vol. 14, No. 5 2018, https://www.twoplustwo.com/magazine/issue161/
  10. A ProAm Guide to Live Poker  
    Phillips, D.; Space, B.
    Two Plus Two Magazine Vol. 13, No. 4 2017, http://www.twoplustwo.com/magazine/issue148/
  11. Over Betting Polarized Ranges in the Short Run: How Big to Bet?  
    Space, B.
    Two Plus Two Magazine Vol. 12, No. 2 2016, http://www.twoplustwo.com/magazine/issue134/
  12. Expectation and Thin Value in No-limit Hold ‘em: Profit comes with Variance  
    Space, B.
    Two Plus Two Magazine Vol. 10, No. 9 2014, http://www.twoplustwo.com/magazine/issue117/
  13. Making a life in the physical sciences  
    Space, B.,
    Journal of Organizational Behavior 2008, 29 (6), 755-759.

Pedagogical Manuscripts

  1. Alternative Derivation of the Partition Function for Generalized Ensembles  
    Belof, J. L. and Space, B;
    Cornell University Library, arXiv preprint arXiv:1309.2017 2013